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Abstract-The paper considers onedimensional ice formation near the surface of a semi-intinite domain. 
A series of experiments executed with water are described and the results compared with theoretical pn- 
dictions for power law and sinusoidal variations in surface temperature. The theoretical study is divided 
into two parts-analytic and numerical. The former consists of approximate solutions developed from a 
perturbation expansion and the latter involves discretization of the space variables and tbe integration 

of the resulting set of frst order non-linear equations. 
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density ; 
constqnt pressure specific heat; 
thermal diffusivity ; 
lateut heat of fusion ; 
Stefan number ; 
function defined in text. 
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INTRODUCTION 

THE SRJDY of heat conduction with change of 
phase began [l] and has continued with prob- 
lems of ice formation These problems and the 
related studies of frost penetration are of con- 
siderable interest in Canada, the United States 
and Russia which are partly situated in polar 
and sub-polar regions. During the latter half of 
the last century a considerable effort has been 
expended towards predicting the growth and 
decay characteristics of ice and consequently 
our understanding the process has improved 
substantially. Despite this, predictions of the 
depth of ice forming at the surface of a semi- 
infinite domain under given annual meteoro- 
logical conditions appear to be unavailable. 

Neumann’s classic solution [1] for a step 
change in surface temperature is probably the 
most commonly used analytic result today, 
despite its departure from observed variations 
in surface temperature and notwithstanding the 
the many extensions and improvements in- 
corporated in recent analytic work [2-10). None 
of these papers discusses periodic boundary 
conditions and it is uncertain whether the most 
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general techniques suggested would be capable 
of handling them without modification. 

Numerical methods [l&-14] have received 
some attention and appear to offer greater 
flexibility, presumably because of their relative 
insensitivity to variations in the boundary con- 
ditions. Analogue methods have also been 
considered [U-18]. Very few attempts have 
been made to apply numerical or analogue 
methods to the periodic problem and as pointed 
out by Scott [lo] the attempts have been 
restricted to ~dividu~ cases. 

A~va~g the limitations of the analytic 
and numerical predictions is the ,scarcity of 
detailed experimental results Field data are 
widely scattered throughout the literature [20- 
221 but usually suffer from the drawback of 
uncertainty in the conditions and material 
properties Laboratory experiments, on the 
other hand, are sparsely reported and very 
limited in the type of test and range of condi- 
tions covered [=26]. 

The work presented here is an attempt to 
develop numerical and approximate analytic 
solutions to the plane ice problem, incorporating 
the periodic boundary condition in particular, 
and to compare these soiutions with each other 
and with a set of laboratory experiments 

APPROXIMATE ANALYTIC METHOD 

Formulation 
Consider ice formation in the one-dimensional 

domain described by Fig 1. Heat conduction 
within the ice is governed by the equation 

a’8 1 de 
e=;at (1) 

At the ice-water interface a heat balance yields 
the following : 

where the subscripts s, L denote the solid and 
liquid phases respectively. 

Noting the last equation, and ignoring 

Initial tsmpamturs 

Fio. 1. Co-ordinate system. 

the temperature distribution in the liquid phase 
for simplicity, we obtain 

dB 84 -= - 
0 dt ax B (3) 

where 

and the subscript c refers to a reference quantity 
which provides a measure of the scale of the 
corresponding variable Substitution of the 
above normalized variables into equation (1) 
then yields 

e!! = &e a+ 
8X2 at (41 

where Ste = (c,B,/L) is a quantity indicating the 
relative importance of sensible and latent heat 
effects; it will be referred to as the Stefan number. 

The progress of the ice-water interface is 
determined from the solution of equation (3) 
subject to a suitable initial condition ; for 
example /3 = 0, if the system is initially ice-free. 
The solution of equation (3) in turn depends 
upon the solution of equation (4) which must 
also satisty appropriate initial and boundary 
conditions in this paper these conditions will 
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be defined through a prescribed variation of 
surface temperature and a liquid temperature 
always taken as the equilibrium freezing temper- 
ature: it is thus implied that 6,(X) = 0. 

Typically, Ste & 1 for an ice-water system 
and this suggests [27] a solution of equation (4) 
in the form 

(5) 

Substituting this into equation (4) generates the 
following set of equations : 

a2+o - 0 

ax2 

* a4p-1 
a2 

= r(p = 1,2,... co) 
(6) 

the solutions of which must satisfy the require- 
ments that 

40(0,7) = 9O(7) 

dJo(B, 7) = 0 

4PCQ 7) = 0 
(7) 

&P(B, 7) = 0. 

From the solutions equations (6) it is found that 
the temperature field is described by 

&, 7, Sre) = d7) x + a*(7) 

Q(7) 1 
+ O(Ste2). 

Satisfaction of equations (7) then yields 

4% 7,&e) = 4'(t) 

Similarly, by taking 

B(7, Sre) = fiO(7, Ste) + 2 Srep&(7, Be) (9) 
P=l 

equation (3) generates 

(10) 

The use of equation (8) in the first of equations 
(10) thus gives 

dBo d0(7) 

z-=- PO + Stefil + 0(Ste2) 

which integrates formally to give 

Bo(7, St4 = F,(7) 

Ste j31(7,Ste)~o(7) dr 

+F,o I F,(7) ’ 
(11) 

0 

where 

F,(r) = {+'(7) dz}* 

and it has been assumed that Bo(O, Ste) = 0. At 
this point, and from now on, terms of higher 
order in Ste are neglected The second of equa- 
tions (10) may be solved in a similar manner 
subject to &(O, Ste) = 0. The equation first 
reduces to 

24'3 1 Bo(7) 

which may be integrated formally to yield 

- 5 

Following substitution of the zero&order term 
for /Jo from equation (11) [since this represents a 
first-order contribution within /&(T, Ste)] the 
equation immediately above then assumes the 
form 
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that any additional sensible heat exchange will 
not greatly alter the temperature regime. 

(12) 

Equation (12) is an explicit form which for any 
prescribed surface temperature, yields part of 
the first-order contribution to /?(z, Ste). The 
other part may be calculated by substitution of 
equation (12) into the second term on the right- 
hand side of equation (11). Thus equations (9), 
(11) and (12) readily provide a first-order 
approximation for ice thickness in an explicit 
form. 

The formation of ice from water will now be 
considered by taking 

C/P(r) = - sin T (13) 

with 0 < t 6 A. It follows immediately from 
equation (8) that the temperature distribution in 
the ice is then given by 

Nx, r, Ste) = - 

Solutions 
At first sight, the above formulation appears 

to be valid for an arbitrary variation in surface 
temperature but closer examination reveals that 
this is not true If the sign of #O(r) were to change 
at any time it is clear that a freezing process 
would be converted into a melting process, or 
vice versa Since the analysis given does not 
strictly accommodate the melting and freezing 
of such strata it must be restricted to situations 
in which 4’(r) is unchanging in sign. No other 
restriction need be applied to the form of the 
sllliace temperature. 

Since 

4O(r) = -sin 5, F,(r) = 2 sin 5 , 

and therefore from equation (12), 

fit(r, Ste) = - f - 3 cos i + g cos3 i. 

Substituting this into equation (11) and then 
into equation (9) we obtain, after some algebra, 

j?(r, Ste) = 2 sin i - 7 sin i sin 0. (15) 

From the wide range of possibilities the form 
of special interest here is the sinusoidal surface 
temperature, which is obviously not constant in 
sign. To circumvent this difficulty solutions will 
be calculated piecewise, each piece corres- 
ponding to the layer closest to the surface during 
a surface temperature excursion on only one 
side of the freezing point As mentioned above, 
this procedure ignores the dynamic effect of any 
other ice or water layers, but the error so 
incurred is not as large as might at first appear. 
This is because Ste Q 1 and therefore each layer 
will rapidly assume and remain at the freezing 
temperature until such time as the surface layer 
contacts it once more. Beyond that time the 
magnitude of the Stefan number again ensures 

I.S- 

FIG. 2. Zeroth and first-order terms. 
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Both zeroth and first-order terms in equation 
(15) are simple functions and are plotted in 
Fig. 2 mere!y for the sake of clarity. The figure 
reveals that the first-order term is about an 
order-of-magnitude less than the zeroth-order 
term thus emphasizing the accuracy of the latter. 
The figure, and equation (15), also reveals the 
curious fact that the overall depth of freezing (or 
thawing) is unaltered by the inclusion of the 
first-order term Therefore the extent of the 
active zone is given by /? = 2 to within an 
accuracy of order Se’. 

A similar procedure may be used for power 
law variations in the departure of the surface 
temperature from the fkeezing temperature. The 
corresponding expressions for temperature and 
interface depth are 

2 f 
B(7, Is&?) = - ( ) n+l 

*f=+ 1112 

respectively. 

NUMERICAL METHOD 

Formulation 
It is convenierit to formulate the numerical 

problem in a moving coordinate system De- 
fining y = X/b, equations (1) and (2) may be 
rewritten as 

a9 ydbae IC a28 -=--_-++ 
at bdtay b2ayi 

(16) 

and 

which clearly reveal the non-linearity associated 

with the moving interface. A~rop~ate initial 
and boundary conditions are : 

scv,O) = a9 

e(0, t) = P(t) 

0(1, t) = 0 and b(0) = b”. 

The spatial derivatives arc now replaced by 
the approximate dilTerence relations 

a26 0 ay’ y=f_i/n) 
4ej+l 

2 
- 28, + ej-1) 

ae 0 5 Y * li/=n) 
Cu y(ej+, - ej-& 

and 

ae 0 ay y=1 
= +e, - i8e,_, 

+ gem_, - 2e,-,), 

by supposing y to be subdivided into m (six per 
layer) equal parts Substitu~g the above dis- 
cretized forms into equations (16) and (17) yields 
a set of m simultaneous first-order, non-linear 
differential equations. Thus, 

dh 
-=~~te~,e,...e,b) 
dt 

(18) 

d&,_,. 
- = gm_ 1 (60, e,, . . . 8, 6) 

dt 

db 
- =g~(eo,el...e~b) 
dt 

(19) 

where e” and 0, are prescribed by the boundary 
conditions. It is now apparent that arbitrary 
variations in the surface temperature co(t) 
present no special difficulty, provided the 
freezing temperature is not crossed. 

integration 
Equations (18) and (19) pose an initial value 

problem which, apart from the approximations 
implicit in truncation, is a complete and 
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accurate description of the ice-water system. 
Several numerical techniques are available for 
their solution and from these the fourth order 
Runge-Kutta procedure was chosen. This 
method proved satisfactory except when the ice 
depth b became very small, where it required 
extremely small time increments for the main- 
tenance of stability. It is known [29] that for the 
diffusion equation within fixed boundaries the 
stability requirement is [KA~/(AX)~] Q 0.7. The 
corresponding requirement for moving bound- 
aries is unknown but it was found that with 
(m2fcAt/b2) Q 0.5 stability was maintained. 

Numerical duplication of the analytic and 
experimental results for monotonic boundary 
conditions was not undertaken but there is 
every indication that no special difficulties 
would have arisen. In the periodic problem 
there was only one major difficulty which has 
already been mentioned During formatio’n of a 
new layer or vanishing of an old one the thick- 
ness must necessarily tend to zero, with attend- 
ant loss of stability. This difficulty was circum- 
vented satisfactorily by assuming a linear 
temperature profile during periods of “forma- 
tion” or “pinch-out” and using equation (19) as 
before. Despite this, the fraction of the cycle 
during which layers were small was found to be 
great enough that excessive computational 
times were encountered. Using the IBM 7040 
machine required 1 h to execute three 2 h 
cycles. 

EXPERIMENTAL STUDY 

Equipment and instrumentation 
The apparatus is shown diagramatically in 

Fig. 3. It consisted [28] of a transparent-walled, 
rectangular plastic tank (11 x 8 x 7.5 in. 
approx) cooled at the top by means of a vapour 
compression refrigerator. The sides and base 
were insulated by thick layers of Styrofoam, a 
“window” of which, situated on the front side, 
could be removed for periodic inspection of the 
ice growth Silicone rubber cushions were 
inserted on each of two sides to reduce the 
danger of expansion breakage. 

The temperature of the refrigerant passing 
through the apparatus was conveniently con- 
trolled by adjusting the pressure-regulating 
valve in the return line in all but the sinusoidal 
tests, for which temperatures in excess of the 
freezing temperature were adjusted with re- 
sistive electric heaters. Accuracy was about 
+2”F in the periodic tests and better than 
+ 1 “F in all others. Each time-dependent bound- 
ary condition was obtained by carefully approxi- 
mating the desired function with a series of 
small step changes. 

Throughout each run the progress of ice- 
water interfaces was followed by frequent 
periodic observation. Each interface was found 
to be a sharply defined plane and its depth was 
measured by alignment of the plane with a pair 
of sights, the location of which was determined 
externally to within +0002 in. With this 
arrangement the estimated uncertainty in the 
measured ice depths was +0405 in. The 
observations revealed that distortion at the edge 
of the interface was negligible, thus indicating 
that the experiments could have been executed 
with a much smaller volume of water. 

Test procedure 
In several preliminary test runs it was found 

that ice formation did not occur i~ediately 
after lowering the surface temperature beneath 
32°F. This indicated sub-cooling of the water, a 
fact which, in view of the use of unprepared tap 
water, came as a surprise The effect became 
very significant in certain tests and in order to 
eliminate it from the proposed tests the following 
procedure was adopted After cooling the bulk 
of the water to 32°F the.surface temperature was 
lowered in a convenient manner until water 
crystallized at the surface. The crystallization 
produced a finite layer of ice which was then 
thawed back (with the surface fixed near 32°F) 
until it was about to vanish_ At this point the 
test proper w started and the surface tempera- 
ture then lowered in the desired manner, 
beginning at 32°F. 
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Ice Level Sighting (copper coils in glycol solution) 

Th*rmol 
Insulation 

Transparent 

Plastic Tank 
\ 

Silicone Rubber 

Screwmd Rods \ 

Micromotor 
Adjustment 1 

FIG. 3. Schematic of apparatus. 

DISCUSSION AND CONCLUSIONS 

Monotonic interjkce history 
The measured progress of the interface for 

two power law variations is shown in Fig 4. 
Also plotted are the results of the approximate 
analysis for each of the prescribed experimental 

0.1 
1 I 1 

I 
Freon 

12 

Ttme, h 

FTci. 4. Power law interface histories. 

lo ot 
Multi - Channel 

Recorder 

forms, plus the Neumann solution. For the 
particular powers prescribed the results are seen 
to be closely grouped and indicate good agree- 
ment between theory and experiment: the 
discrepancy in the least accurati test (n = O-83) 
is attributed to the difftculty in choosing a 
temporal origin. 

It is unfortunate that measured values were 
not obtained for powers close to n = 0 but it 
was found that a step discontinuity in surface 
temperature was very difficult to approach 
experimentally. Nevertheless, the exact and 
approximate curves in Fig 4 clearly indicate 
that boundary conditions similar to, but not 
identical with, the Neumann condition lead to 
large departures from the predictions of the 
Neumann solution. 

Periodic interjke history 
Figure 5 combines the analytic, numerical and 

experimental results for periodic freezing and 
thawing over the first three cycles. During the 
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fust half-cycle a thick layer of ice formed and 
with each successive freezing half-cycle the lower 
ice face penetrated further into the water [28]. 
Results for this interface have been omitted from 
the figure for simplicity and because of un- 
certainty in the experimental conditions. 

In keeping with the earlier discussion the 
analytic results have been plotted piecewise over 
r intervals of II: ice properties were used during 
a freezing half-cycle and water properties during 
thawing It is evident from the figure that agree- 
ment between the analytic and numerical results 
is excellent. The neglect of the dynamic effects of 
regions outside the layer adjacent to the 
stationary upper surface is seen to be small as 
the magnitude of the Stefan number (O-061) 
would imply. 

It is also evident from Fig. 5 that the 
theoretical melting predictions are well short of 
the measured values, particularly during the 
later stages Rearing in mind the uncertainty in 
the properties of tap water, frozen or unfrozen, 
and the neglect of natural convection it would 
appear that closer agreement could not be 
expected. A very recent paper [26] published 
after the time the experiments reported here 

were executed contains data which suggest that 
natural convection did influence the present 
experiments These more recent data, although 
obtained for a step change in surface tempera- 
ture, imply that the effect would be most 
noticeable in the later stages of the melting 
process and would produce a greater thaw 
depth The figure reveals such behaviour with 
an increase of about 16 per cent in the depth of 
thaw. 

A recurrent phenomenon revealed by Fig 5 
is the delay evident in the early stages of each 
melting period and not present in the corres- 
ponding freezing periods (neglecting the first 
freezing period for other reasons). Clearly, this 
cannot be a subcooling effect and the explana- 
tion appears to lie with two other possibilities. 
Firstly, in passing through 32°F the apparatus 
controlling surface temperature had to be 
switched: from a refrigerator to a heater or vice 
versa Since the effective thermal capacity of the 
cooling system was much greater than that of the 
heating system it is likely that the ascent through 
32°F entailed greater delay than the descent. 
Secondly, it is possible that the greater density 
of melted ice created a thin vapour film separa- 

l l l Analytic 
-ExpefimontoI 

FIG. 5. Periodic interface history. 
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ting the water and the heated surface. No such 
film was noticed although it may have been thin 
enough and uniform enough to escape attention. 

Conclusions 
The laboratory experiments were originally 

designed to test the analytic and numerical 
predictions with a view to their future use in 
field conditions. In this way it was hoped that a 
precisely posed theoretical problem could be 
simulated experimentally and the validity of the 
assumptions checked within the accuracy of the 
experiments. 

The power law tests were well-suited to the 
characteristics of the apparatus and incorpo- 
rated the full accuracy of the equipment Since 
the water was initially cooled to 32°F the effect 
of convection was negligible Figure 4 indicates 
that under these conditions the approximate 
analysis provides simple, reliable solutions which 
will be valid in similar circumstances, e.g. late 
fall and early winter, especially in a lake or 
newly exposed ground areas such as occur after 
surface stripping and/or backfill 

In the periodic tests very accurate reproduc- 
tion of the prescribed theoretical conditions was 
not possible. This has been attributed to de- 
partures from a perfect sinusoidal variation in 
the boundary temperature and the effect of 
natural convection, particularly during the 
period of thaw. Like subcooling natural con- 
vection may have a significant effect in the field 
(eg lake and sea ice) and the laboratory. 

Round-off and truncation error in the numeri- 
cal results is considered to be quite small and 
therefore it is suggested that the numerical 
results provide an accurate description of 
periodic behaviour in the absence of convection. 
The analytic predictions for interface depth are 
in close agreement with the numerical results 
and are about 16 per cent less than the measured 
values The simplicity of the analytic expression 
makes it useful for most field situations but it 
must be noted that the analysis was restricted to 
a constant-property, homogeneous medium of 
high moisture content The numerical technique, 

on the other hand, dw not suffer from these 
limitations providing, of course, that the pro- 
perty variations are known Possibly, the ex- 
cessive computational times encountered could 
be reduced by a normalization process. 

One of the most important features of the 
sinusoidal results was the agreement between 
theory and experiment in revealing the rapidity 
with which steady periodic behaviour is 
approached. The active zone, which is effectively 
defined within the first cycle, typifies this 
situation. The fact that transients played a 
negligible role is implied by the magnitude of 
the Stefan number. It is therefore concluded that 
when Ste 4 1 the interface depth is much more 
strongly inIluenced by immediate history than 
by the remote past 
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th&niqweat divislwsn Cux wytiqueet numlrique. La premi& c0naiatean solutiona approchks 
CiaborcoS P par& d’uu d&veloppament de perturbations et la dami&e impllque une dk&isation dea vari- 

ables d’espaa: et l’int&gration du systtmt d’&quations noniin&&ea du premier ordre qui en r&he. 

EINE UNTERSUCHUNG DER EIN-DIMENSIONALEN EISBILDUNG MIT 
BESONDERER BERUCKSICHTIGUNG PERIODISCHEN ANWACHSENS UND ZERFALLS 

Zmammenfaaemg-Es wird die ein-dimensi0rmle Eisbildung an der OkrfBlck einea halb-unendlichen 
Bereiches ktrachtet. Eine Relk VW Vemmkn mit Waaser we&n bescki&en tmd die Ergebnisse mit 
the0retiachen Bemchn~ verglichsn, die ein Potextzgesatz tmd sinuaf&u@ Vert&mgus der Ober- 
l&kettempmatur vbnchrtiben. Die tkomtisck Untersudumg iat in zwei Tei4 einen analytia&en und 
einen numerisckn get&h. Der asten beatek aus N~~~~ die aus eina St&funkti0n folgen 
und der Ietzten umfasst die Aufteihmg van Raumver&nderlickn und dk Integrati0n des sicb ergeknden 

Satzes nicht-linearer Diff&entialgleichungen erster Ordnung 

A~~ri~aqnn-B CTaTbe p;tcCMaTpHBi%?TCH oqtiohlepHioe 06pa30Bi.We ;rbJa BhH3lt nouepx- 
HOCTH nOJtyOl-paHkt=teHliO# ObJtaCTki. OnMCJzlBaI0TCI? 3KCnepMMeHTbI C BOZOti M nonyqeHHare 
peaynbrarbt cpannnsamTcn c TebpeTnuecmtMn pacqerasru zzn-t cztylraee cTenerifior0 P cnay- 
conzanbiioro ifantertenriri renrneparypv n0~epxnOoTu. Teoperauec~oe Izc~Tezoiosaktne COCTOHT 
213 ni?yx same&: aHam3a k4 pacreTa. lIepB,aa qacTb COCTOS~T km ~P~~~~f~eHH~X peters, 

nonyremarx msi csryuafr Heynop~xo~eHHoro yBe~rnq~H~~ oi&va nbza. Bo ~~opolt YacTn 

npouo~nrcrt paageneuae npocTparicTneirrimrx nepeMenubtx ii anTerpspoeariae non_vseneo8 
cacTenibI siemiaeiribrx ypauseuntl nepsoro nopftgua. 


