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Abstract—The paper considers one-dimensional ice formation near the surface of a semi-infinite domain.

A series of experiments executed with water are described and the results compared with theoretical pre-

dictions for power law and sinusoidal variations in surface temperature. The theoretical study is divided

into two parts—analytic and numerical. The former consists of approximate solutions developed from a

perturbation expansion and the latter involves discretization of the space variables and the integration
of the resulting set of first order non-linear equations.

NOMENCLATURE
¢.0, temperature departure from transition
temperature ;
7,t, time;
x, X, depth from stationary upper surface;
B. b, depth of interface;
Y, X/b;
k, thermal conductivity;
p,  density;
¢,  constgnt pressure specific heat;
K, thermal diffusivity ;
L, latent heat of fusion;
Ste, Stefan number;
F, function defined in text.
Subscripts
i, initial ;
¢, characteristic;
B, b, interface;
s, solid ;
L, liquid.
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INTRODUCTION

THE sTUDY of heat conduction with change of
phase began [1] and has continued with prob-
lems of ice formation. These problems and the
related studies of frost penetration are of con-
siderable interest in Canada, the United States
and Russia which are partly situated in polar
and sub-polar regions. During the latter half of
the last century a considerable effort has been
expended towards predicting the growth and
decay characteristics of ice and consequently
our understanding the process has improved
substantially. Despite this, predictions of the
depth of ice forming at the surface of a semi-
infinite domain under given annual meteoro-
logical conditions appear to be unavailable.

Neumann’s classic solution [1] for a step
change in surface temperature is probably the
most commonly used analytic result today,
despite its departure from observed variations
in surface temperature and notwithstanding the
the many extensions and improvements in-
corporated in recent analytic work [2—107]. None
of these papers discusses periodic boundary
conditions and it is uncertain whether the most
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general techniques suggested would be capable
of handling them without modification.

Numerical methods [11-14] have received
some attention and appear to offer greater
flexibility, presumably because of their relative
insensitivity to variations in the boundary con-
ditions. Analogue methods have also been
considered [15-18]. Very few attempts have
been made to apply numerical or analogue
methods to the periodic problem and as pointed
out by Scott [19] the attempts have been
restricted to individual cases.

Aggravating the limitations of the analytic
and numerical predictions is the scarcity of
detailed experimental results. Field data are
widely scattered throughout the literature [20-
22] but usually suffer from the drawback of
uncertainty in the conditions and material
properties. Laboratory experiments, on the
other hand, are sparsely reported and very
limited in the type of test and range of condi-
tions covered [23-26].

The work presented here is an attempt to
develop numerical and approximate analytic
solutions to the plane ice probiem, incorporating
the periodic boundary condition in particular,
and to compare these solutions with each other
and with a set of laboratory experiments.

APPROXIMATE ANALYTIC METHOD
Formulation
Consider ice formation in the one-dimensional
domain described by Fig 1. Heat conduction
within the ice is governed by the equation

201
28X kot

At the ice—water interface a heat balance yields
the following :

db . (26 £,
oL dr k’ (ﬁ)b “ <5X>b

where the subscripts s, L denote the solid and
liquid phases respectively.
Normalizing the last equation, and ignoring
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Fic. 1. Co-ordinate system.

the temperature distribution in the liquid phase
for simplicity, we obtain

dﬁ_(&d})
L= 5}.#

dr
L \}
t=§-, x=(i‘2—)X

8 _ ( oL )*
4) = 5;» ﬂ - \Eé:i: b
and the subscript c refers to a reference quantity
which provides a measure of the scale of the
corresponding variable. Substitution of the

above normalized variables into equation (1)
then yields

3

where

2
é—d’- = Ste %%

ox? ér

where Ste = (c,0,/L) is a quantity indicating the
relative importance of sensible and latent heat
effects; it will be referred to as the Stefan number.
The progress of the ice-water interface is
determined from the solution of equation (3)
subject to a suitable initial condition; for
example § = 0, if the system is initially ice-free.
The solution of equation (3) in turn depends
upon the solution of equation (4) which must
also satisty appropriate initial and boundary
conditions. In this paper these conditions will
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be defined through a prescribed variation of
surface temperature and a liquid temperature
always taken as the equilibrium freezing temper-
ature: it is thus implied that (X) = 0.

Typically, Ste < 1 for an ice—water system
and this suggests [27] a solution of equation (4)
in the form

#(x, 7, Ste) = olx, 7) + 2 te? $(x,7) (5)

Substituting this into equation (4) generates the
following set of equations:

2

6)
P, by, _ ‘
6x2p——a';——(p— 1,2,... oo)

the solutions of which must satisfy the require-
ments that

$0(0, 7) = %)

¢0(ﬂ’ T) =

$,(0,7) = 0 Y
B, 7) =

From the solutions equations (6) it is found that
the temperature field is described by

d(x, 1, Ste) = a,(1) x + ay(1)

3
+ste[x_d_ﬂ+x2d“

T 1 d + asx(t)x + a4(t):l

+ O(Ste?).
Satisfaction of equations (7) then yields
#x, 7, Ste) = $°(1) (1 - -;)

d 0
+ Ste ¢°(7) [-— G-'%g + 3—25‘%) x

(1 d¢°) x? Gdﬂ 1 d¢°) x3]
e/ T \Fa a3

+.... ®)
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Similarly, by taking

B(z, Ste) = Bo(r, Ste) + 5. Ste? B(x, Ste) (9)
p=1

equation (3) generates
dfo _ <5¢o>
dr 0x /4
% _ ()
dr 0x/g
The use of equation (8) in the first of equations
(10) thus gives

do _ $°(x)
‘dt B, + Ste B, + O(Ste?)

which integrates formally to give
Bo(t, Ste) = F(7)

Nz J' B,(z, Ste) $°(x) dr
Fo(7) Fy(7)

(10)

» (11

where

Fof) = {—2£¢°(r) dr}¢

and it has been assumed that §4(0, Ste) = 0. At
this point, and from now on, terms of higher
order in Ste are neglected. The second of equa-
tions (10) may be solved in a similar manner
subject to B,(0, Ste) = 0. The equation first

reduces to
dB, _ $°0[ Bole) 46° _ , 8°(0)
dz 6 | ¢%) dt Bo(7)

which may be integrated formally to yield

Bi(z, Ste)—— ﬂo( )i@id - {"’0(’)}2 dr.
Bo(7)

Following substitution of the zeroth-order term
for S, from equation (11) [since this represents a
first-order contribution within B,(z, Ste)] the
equation immediately above then assumes the
form
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C1fo a0 1)
Bil(z, Ste) = ngo(r)-E dr — 3 j Foit) dr.
0

(12)

Equation (12) is an explicit form which, for any
prescribed surface temperature, yields part of
the first-order conmtribution to f(r, Ste). The
other part may be calculated by substitution of
equation (12) into the second term on the right-
hand side of equation (11). Thus equations (9),
(11) and (12) readily provide a first-order
approximation for ice thickness in an explicit
form.

Solutions

At first sight, the above formulation appears
to be valid for an arbitrary variation in surface
temperature but closer examination reveals that
this is not true. If the sign of $°(z) were to change
at any time it is clear that a freezing process
would be converted into a melting process, or
vice versa. Since the analysis given does not
strictly accommodate the melting and freezing
of such strata it must be restricted to situations
in which ¢°) is unchanging in sign. No other
restriction need be applied to the form of the
surface temperature.

From the wide range of possibilities the form
of special interest here is the sinusoidal surface
temperature, which is obviously not constant in
sign. To circumvent this difficulty solutions will
be calculated piecewise, each piece corres-
ponding to the layer closest to the surface during
a surface temperature excursion on only one
side of the freezing point. As mentioned above,
this procedure ignores the dynamic effect of any
other ice or water layers, but the error so
incurred is not as large as might at first appear.
This is because Ste < 1 and therefore each layer
will rapidly assume and remain at the freezing
temperature until such time as the surface layer
contacts it once more. Beyond that time the
magnitude of the Stefan number again ensures
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that any additional sensible heat exchange will
not greatly alter the temperature régime.

The formation of ice from water will now be
considered by taking

%) = —sint (13)

with 0 € 7 € #n. It follows immediately from
equation (8) that the temperature distribution in
the ice is then given by

d(x, 1, Ste) = — (1 - %) sint

. 3dp ﬁcosr)
—Stesmr[ (§d1+3sinr x

(cos 7\ x? 1 dp cosr) x3]
+ksinr ﬁ+(Pa—ﬁsint 3] (14)

Since

$°(t) = —sint, Foft) = 2sin =

and therefore from equation (12),

2 2 t© 8 .t
Bi(t, Ste) = ~ 3 —3—cos§ + §oos’ 5

Substituting this into equation (11) and then
into equation (9) we obtain, after some algebra,

B(z, Ste) = 2 sin—;- - -SE sin z sin .

3 2 (15)
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FIG. 2. Zeroth and first-order terms.
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Both zeroth and first-order terms in equation
(15) are simple functions and are plotted in
Fig 2 merely for the sake of clarity. The figure
reveals that the first-order term is about an
order-of-magnitude less than the zeroth-order
term thus emphasizing the accuracy of the latter.
The figure, and equation (15), also reveals the
curious fact that the overall depth of freezing (or
thawing) is unaltered by the inclusion of the
first-order term. Therefore the extent of the
active zone is given by f =2 to within an
accuracy of order Ste?.

A similar procedure may be used for power
law variations in the departure of the surface
temperature from the freezing temperature. The
corresponding expressions for temperature and
interface depth are

B !
pn n\ x? 1dp n\x?
*3?)”(327*(3‘2'&?'%)?]
Bz, Ste) = 2\ oz
’ n+1

_§£E 2 )§r(3n+l)/2
6 \n+1 ’

respectively.

NUMERICAL METHOD
Formulation
It is convenient to formulate the numerical
problem in a moving coordinate system. De-
fining y = X/b, equations (1) and (2) may be
rewritten as

00 ydbod «k 8%0
% " batdy B (16)

and

db 20, <aeL)
Lb'—'=k, = ’k 3 17
PR E (ay)y=1 \&y )y W

which clearly reveal the non-linearity associated

1347

with the moving interface. Appropriate initial
and boundary conditions are:

8y, 0) = 64y)
00, 1) = 6°()
6(1,t) =0 and b(0) = b°.

The spatial derivatives are now replaced by
the approximate difference relations

529) m

— >—(f,,,—26,+6,_,)

(5},2 y=Uim) 2( j+1 i i-1
2

06 m
(ay>y==(.i/m) ( Ak
and

a0 m
Z) =~Zqe, - 186,
(ay)y=1 6 ( !
+ 99m—2 - 295!-— 3),

- 9.5— 1)

by supposing y to be subdivided into m (six per
layer) equal parts. Substituting the above dis-
cretized forms into equations (16} and (17) yields
a set of m simultaneous first-order, non-linear
differential equations. Thus,

deé
E1=g1(8°,8,...6,,,,b)
’ (18)
db,_,.
(,int 1 = gm—l(eoaeb--'omb)
L g @.6,...000) (9

dt

where 8° and 6, are prescribed by the boundary
conditions. It is now apparent that arbitrary
variations in the surface temperature 6°()
present no special difficulty, provided the
freezing temperature is not crossed.

Integration

Equations (18) and (19) pose an initial value
problem which, apart from the approximations
implicit in truncation, is a complete and
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accurate description of the ice-water system.
Several numerical techniques are available for
their solution and from these the fourth order
Runge-Kutta procedure was chosen. This
method proved satisfactory except when the ice
depth b became very small, where it required
extremely small time increments for the main-
tenance of stability. It is known [29] that for the
diffusion equation within fixed boundaries the
stability requirement is [xAt/(AX)*] < 0-7. The
corresponding requirement for moving bound-
aries is unknown but it was found that with
(m*kAt/b?) < 0-5 stability was maintained.

Numerical duplication of the analytic and
experimental results for monotonic boundary
conditions was not undertaken but there is
every indication that no special difficulties
would have arisen. In the periodic probiem
there was only one major difficulty which has
already been mentioned. During formation of a
new layer or vanishing of an old one the thick-
ness must necessarily tend to zero, with attend-
ant loss of stability. This difficulty was circum-
vented satisfactorily by assuming a linear
temperature profile during periods of “‘forma-
tion” or “pinch-out” and using equation (19) as
before. Despite this, the fraction of the cycle
during which layers were small was found to be
great enough that excessive computational
times were encountered. Using the IBM 7040
machine required 1 h to execute three 2 h
cycles.

EXPERIMENTAL STUDY

Equipment and instrumentation

The apparatus is shown diagramatically in
Fig 3. It consisted [28] of a transparent-walled,
rectangular plastic tank (11 x 8 x 7-5 in.
approx.) cooled at the top by means of a vapour
compression refrigerator. The sides and base
were insulated by thick layers of styrofoam, a
“window” of which, situated on the front side,
could be removed for periodic inspection of the
ice growth. Silicone rubber cushions were
inserted on each of two sides to reduce the
danger of expansion breakage.

G. S. H. LOCK, J. R. GUNDERSON, D. QUON and J. K. DONNELLY

The temperature of the refrigerant passing
through the apparatus was conveniently con-
trolled by adjusting the pressure-regulating
valve in the return line in all but the sinusoidal
tests, for which temperatures in excess of the
freezing temperature were adjusted with re-
sistive electric heaters. Accuracy was about
+2°F in the periodic tests and better than
+1°F in all others. Each time-dependent bound-
ary condition was obtained by carefully approxi-
mating the desired function with a series of
small step changes.

Throughout each run the progress of ice-
water interfaces was followed by frequent
periodic observation. Each interface was found
to be a sharply defined plane and its depth was
measured by alignment of the plane with a pair
of sights, the location of which was determined
externally to within +0002 in. With this
arrangement the estimated uncertainty in the
measured ice depths was +0-005 in. The
observations revealed that distortion at the edge
of the interface was negligible, thus indicating
that the experiments could have been executed
with a much smaller volume of water.

Test procedure

In several preliminary test runs it was found
that ice formation did not occur immediately
after lowering the surface temperature beneath
32°F. This indicated sub-cooling of the water, a
fact which, in view of the use of unprepared tap
water, came as a surprise. The effect became
very significant in certain tests and in order to
eliminate it from the proposed tests the following
procedure was adopted. After cooling the bulk
of the water to 32°F the surface temperature was
lowered in a convenient manner until water
crystallized at the surface. The crystallization
produced a finite layer of ice which was then
thawed back (with the surface fixed near 32°F)
until it was about to vanish. At this point the
test proper was started and the surface tempera-
ture then lowered in the desired manner,
beginning at 32°F.
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F1G. 3. Schematic of apparatus.

DISCUSSION AND CONCLUSIONS
Monotonic interface history
The measured progress of the interface for
two power law variations is shown in Fig 4.
Also plotted are the results of the approximate
analysis for each of the prescribed experimental
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FIG. 4. Power law interface histories.

forms, plus the Neumann solution. For the
particular powers prescribed the results are seen
to be closely grouped and indicate good agree-
ment between theory and experiment: the
discrepancy in the least accurate test (n = 0-83)
is attributed to the difficulty in choosing a
temporal origin.

It is unfortunate that measured values were
not obtained for powers close to n = 0 but it
was found that a step discontinuity in surface
temperature was very difficult to approach
experimentally. Nevertheless, the exact and
approximate curves in Fig 4 clearly indicate
that boundary conditions similar to, but not
identical with, the Neumann condition lead to
large departures from the predictions of the
Neumann solution.

Periodic interface history

Figure 5 combines the analytic, numerical and
experimental results for periodic freezing and
thawing over the first three cycles. During the
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first half-cycle a thick layer of ice formed and
with each successive freezing half-cycle the lower
ice face penetrated further into the water [28].
Results for this interface have been omitted from
the figure for simplicity and because of un-
certainty in the experimental conditions.

In keeping with the earlier discussion the
analytic results have been plotted piecewise over
7 intervals of z: ice properties were used during
a freezing half-cycle and water properties during
thawing. It is evident from the figure that agree-
ment between the analytic and numerical results
is excellent. The neglect of the dynamic effects of
regions outside the layer adjacent to the
stationary upper surface is seen to be small, as
the magnitude of the Stefan number (0-061)
would imply.

It is also evident from Fig. 5 that the
theoretical melting predictions are well short of
the measured values, particularly during the
later stages. Bearing in mind the uncertainty in
the properties of tap water, frozen or unfrozen,
and the neglect of natural convection it would
appear that closer agreement could not be
expected. A very recent paper [26] published
after the time the experiments reported here

Surface
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were executed contains data which suggest that
natural convection did influence the present
experiments. These more recent data, although
obtained for a step change in surface tempera-
ture, imply that the effect would be most
noticeable in the later stages of the melting
process and would produce a greater thaw
depth. The figure reveals such behaviour with
an increase of about 16 per cent in the depth of
thaw.

A recurrent phenomenon revealed by Fig 5
is the delay evident in the early stages of each
melting period and not present in the corres-
ponding freezing periods (neglecting the first
freezing period for other reasons). Clearly, this
cannot be a subcooling effect and the explana-
tion appears to lie with two other possibilities.
Firstly, in passing through 32°F the apparatus
controlling surface temperature had to be
switched : from a refrigerator to a heater or vice
versa. Since the effective thermal capacity of the
cooling system was much greater than that of the
heating system it is likely that the ascent through
32°F entailed greater delay than the descent.
Secondly, it is possible that the greater density
of melted ice created a thin vapour film separa-

Time {2 h period)

temperature

9’(/)'48‘“\\7)‘
) /\
Meit B

2:0

ft x 102

3-0F

Depth,

4.0

5-0

umerical
. Anolytic
~o=o—o~ Experimental

6-0

F1G. 5. Periodic interface history.
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ting the water and the heated surface. No such
film was noticed although it may have been thin
enough and uniform enough to escape attention.

Conclusions

The laboratory experiments were originally
designed to test the analytic and numerical
predictions with a view to their future use in
field conditions. In this way it was hoped that a
precisely posed theoretical problem could be
simulated experimentally and the validity of the
assumptions checked within the accuracy of the
experiments.

The power law tests were well-suited to the
characteristics of the apparatus and incorpo-
rated the full accuracy of the equipment. Since
the water was initially cooled to 32°F the effect
of convection was negligible. Figure 4 indicates
that under these conditions the approximate
analysis provides simple, reliable solutions which
will be valid in similar circumstances, e.g late
fall and early winter, especially in a lake or
newly exposed ground areas such as occur after
surface stripping and/or backfill

In the periodic tests very accurate reproduc-
tion of the prescribed theoretical conditions was
not possible. This has been attributed to de-
partures from a perfect sinusoidal variation in
the boundary temperature and the effect of
natural comvection, particularly during the
period of thaw. Like subcooling, natural con-
vection may have a significant effect in the field
(e.g. lake and sea ice) and the laboratory.

Round-off and truncation error in the numeri-
cal results is considered to be quite small and
therefore it is suggested that the numerical
results provide an accurate description of
periodic behaviour in the absence of convection.
The analytic predictions for interface depth are
in close agreement with the numerical results
and are about 16 per cent less than the measured
values. The simplicity of the analytic expression
makes it useful for most field situations but it
must be noted that the analysis was restricted to
a constant-property, homogeneous medium of
high moisture content. The numerical technique,
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on the other hand, does not suffer from these
limitations providing, of course, that the pro-
perty variations are known. Possibly, the ex-
cessive computational times encountered could
be reduced by a normalization process.

One of the most important features of the
sinusoidal results was the agreement between
theory and experiment in revealing the rapidity
with which steady periodic behaviour is
approached. The active zone, which is effectively
defined within the first cycle, typifies this
situation. The fact that transients played a
negligible role is implied by the magnitude of
the Stefan number. It is therefore concluded that
when Ste < 1 the interface depth is much more
strongly influenced by immediate history than
by the remote past.
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ETUDE DE LA FORMATION UNIDIMENSIONNELLE DE LA GLACE AVEC MENTION
PARTICULIERE DE LA CROISSANCE ET DE LA DECROISSANCE PERIODIQUES

Résumé— L. article considére la formation unidimensionnelle de glace, prés de la surface d’un domaine semi-
infini. Une série d’expériences exécutées avec de 1'eau est décrite et les résultats sont comparés avec les
prévisions théoriques pour des variations en puissance et sinusoldales de la températuré de surface. L'étude
théorique est divisée en doux parties—analytique et numérique. La premiére consiste en solutions approchées
élaborées & partir d"un développement de perturbations et la derniére implique une discrétisation des vari-
ables d’espace et I'intégration du systéme d'équations nonlinéaires du premier ordre qui en résulte.

EINE UNTERSUCHUNG DER EIN-DIMENSIONALEN EISBILDUNG MIT
BESONDERER BERUCKSICHTIGUNG PERIODISCHEN ANWACHSENS UND ZERFALLS

Zusammenf;

Es wird die cin-dimensionale Eisbildung an der Oberfliiche eines halb-unendlichen

Bereiches betrachtet. Eine Reihe von Versuchen mit Wasser werden beschrisben und die Ergebnisse mit

theoretischen Berechnungen verglichen, die ein Potenzgesetz und sinusfSrmige Verteilungen der Ober-

flichentemperatur vorschreiben. Die theoretische Untersuchung ist in zwei Teile, einen analytischen und

cinen numerischen geteilt. Der erstere besteht aus Niherungs-i3sungen die aus einer Stdrfunktion folgen

und der letztere umfasst die Aufteilung von Raumverdanderlichen und die Integration des sich ergebenden
Satzes nicht-linearer Differentialgleichungen erster Ordnung.

AnHoTayMa—DB craTbe paccMarTpMBAeTCA OIHOMEPHOEe 0(paloBaHMe JbAA BOAMAM MOBEpPX-
HOCTH NOJYyOrpaHudyeHHOi olfnactv. ONMHUCHBAITCA OKCAEPHMEHTH ¢ BOXOW M nogyveHHLe
PeayabTaTH CPABHHBAIOTCA C TEOPETHUYECKMMH DACYETaMH TIA CIY4aeB CTENEHHOTO M CHHY-
COMAANBHOTO NBMEHEHMA TEMNEPATYPH noBepxXHOCTH. TeopeTnueckoe HeceIOBaHMe COCTOMT
u3 ABYX uactelt ! ananusa u pacyera. Ilepsast vacTh cocToMT M3 MPuCIIDKEHHHX penrenuit,
ANOJIY4YeHHHX A Caydasd HeYNOPAROYEHHOTO yBeamvexus olpeMa abia. Bo sropo¥ uacru
NPOBOXMTCA pPasiejieHue MPOCTPAHCTBEHHHX [EPEMEHHHX U MHTErPUPOBAHHE NOAYIEHHON
CHCTEMH HeJMHEeHHHX ypaBHEHUMH nepBOro NOPANKA.



